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Motivation for Cerebras

Manufacturing Clock Op/Sec' Die size Transistor | Architecture | Launch
Technology node («m) frequency (mm)2 count factor Date
740 kHz 1176

T — (L i o v
I B - Y T T -

'For comparison, Op is defined as a 32-bit BCD addition for the 4004 and a 32-bit integer add for the A100.

lntel 4004

1971

1974

1982

1989

Die Size

Pentium

1992

2008

2010

TitanX

2015

Over the last 50 years...

Die size growth approaches
an asymptote

Geometry shrink slows down

Growth in # of transistors Is
slowing
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Emerging Workloads — Neural Networks

= performance bound
= abundant parallelism

= drive the demand for more transistors




One large die? Many
smaller ones?

= Off-die bandwidth proportional to the
log of the die area (Rent’s rule)

=  Processing power grows linearly with
die area

= Ratio of compute to off-die
bandwidth increases with die area.

Keep compute on-die

Decrease the impact of relatively slow off-die
communication
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The Beginnings
of Wafer Scale

Use an entire wafer to make a
single chip (Wafer Scale
Integration)

Trilogy 1980s attempt

= Addressing the wafer
yield problem

= triple-modular latency:
logic gate and flip-flop
were triplicated

= binary two-out-of-three
voting at each triplication




The Wafer Scale Engine (WSE-2)

il Cerebras Wafer Scale
Engine 2, the largest chip
ever built

The Cerebras WSE-2 powers the revolutionary CS-2 system.
iy Sl 2.6 Trillion transistors and 850,000 Al-optimized, fully
T programmable cores - all packed onto a single silicon wafer
HHHIR to deliver world-leading Al compute density at
it unprecedented low latencies.

.
TTANAN 2N

ey = Wafer cut up to make
g iitiiialiill iy
: — hundreds of separate
Cerebras WSE-2 Largest GPU devices
46,225mm2 Silicon 826mm?2 Silicon
2.6 Trillion Transistors 54.2 Billion Transistors

= Off-silicon communication
(Lauterbach, 2021)
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grid of processing
elements (PESs)
850,000 PEs in total




IO i S
Die HENEERNERS
i
Core

/'/ -
215mm x 215mm RS
12 x 7 Die LR

L 17mm X 30mm 84 Die ot

10,156 Cores

(Lie, 2023)

Architecture Detalls




The Wafer Yield Problem

No Defects

= Trilogy: triple-modular
redundancy

(T T T " = Cerebras: Homogenous

array of processing elements

(T TTET T GI=S)

(T TTET T

= Approximately 1% held in
T T 11T [T T T reserve to “repair” defective

Hardware remaps and reconnects using extra links P ES

Core Extra core @ Defective core




The WSE-2 Core

\ 32b |
\qﬂﬂc Router o
Memory '

Bidirectional
interfaces

Data packet: 16
bits data, 16 bits
control info

Fabric extended
across die
boundaries
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48kB SRAM

Per cycle: two 64-
bit reads and one
64-bit write

32b
Fabric Router
32b Buffers

HEH

f t 32k,

Comput

Routes

Memory

32b

The WSE-2 Core
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Fine-grained Dataflow

Dataflow: computation is triggered by data arrival, and an
Instruction is executed when all inputs have arrived

Traditional von Neumann architecture: instructions executed in
an order specified by control flow




The Intended Purpose
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Why?

Its important to support scientific applications even as Al drives
the hardware industry

Porting irregular applications to dataflow architectures is a new
and interesting problem
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Computational Molecular Dynamics

Resolving atomic vibrations at a tiny timestep (10-1° sec)

Simulating long time scales to observe physical phenomena

= for example, on the order of 100 microseconds

Month-long exascale runs can at most only simulate a few
microseconds
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Strong Scaling

Keep problem size constant, increase the number of processors,
and achieve proportional speedup

Obstacles include:
= Kernel launch overhead

=  MPI communication costs

CPU/GPU machines cannot achieve the required performance




Breaking the Molecular Dynamics Timescale Barrier
Using a Wafer-Scale System

Kylee Santos*, Stan Moore®, Tomas Oppelstrup*, Amirali Sh n*, Tlya Sharapov*, Aidan Thompson’,
Delyan Z Kalchev*, Danny Perez®, Robert Schreiber*, Scott Pakin®, Edgar A. Leon, James H Laros IIIT,
Michael James*, and Sivasankaran Rajamanickam?

*Cerebras Systems, Sunny
"Sandia National Laboratories, Albuquerque, NM
rence Livermore National Laborat Livermore, CA
SLos Alamos National Laboratory, Los Alamos, NM

Abstract—Molecular dynamics (MD) simulations have trans-

: formed our understanding of the nanoscale, driving breakthroughs

in materials science, computational chemistry, and several other

O n e fields, including biophysics and drug design. Even on exascale
¢ supercomputers, however, runtimes are excessive for systems

and timescales of scientific interest. Here, we demonstrate strong

‘ scaling of MD simulations on the Cerebras Wafer-Scale Engine.
s By dedicating a proces core for each simulated atom, we
¢ demonstrate a 179-fold improvement in timesteps per second versus

the Frontier GPU-based Exascale platform, along with a large
improvement in timesteps per unit energy. Reducing every year of
runtime to two days unlocks currently inaccessible timescales of
slow microstructure transformation processes that are critical for
understanding material behavior and function.

Our dataflow algorithm runs Embedded Atom Method (EAM)
simulations at rates over 270,000 timesteps per second for prob-
lems with up to 800k atoms. This demonstrated performanc
unprecedented for general-purpose processing cores.

Index Terms—wafer-scale engine, molecular dynamics, materials,
EAM, strong scaling

(Santos et al., 2024)
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Mapping
Atoms to PEs

=  Atom-based MD
simulation

= Modeling Tungsten

= Map one atom per
WSE-2 core

= Mapping is locality
preserving
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“Marching multicast”

Candidate Exchange

At every time step
communication

-to-all

particles exchange data with their neighborhood in all

Marching multicast phases are used to prevent link contention
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Possible router
configurations

______________________________________________________________________________________________

..............................................................................................

______________________________________________________________________________________________

Marching multicast
horizontal phase




Tungsten Implementation

/+ Process horizontal tramsfer =/
parallel {
{
payload[p];
control(mcast_ctrl[s]);

ket P

[
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ri(] payload([p];
vs ri[] control(mcast_ctrlls]);
T
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Performance

— (CS-2 (WSE) Quartz (CPU) = Frontier (GPU) O Taatoms Cu atoms A W atoms

179X vs. 55X vs.
best GPU best CPU

Timespteps per second
WSE speedup factor
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—
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o
[0)
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a
fart
(e}
0
[}
S
=

10° 10* 102 10? 103 ) 102
Number of nodes Timesteps per Joule WSE energy efficiency factor

(a) (b) (c)

Fig. 7. Measured performance and energy efficiency of single WSE compared to multi-node GPU and CPU systems for Ta, Cu, and W EAM benchmark simulations
with 801,792 atoms. (a) For Ta, WSE (green square) achieved 179x and 55x speedup compared to the maximum simulation rates on GPU (blue squares) and CPU
(orange squares) systems, respectively; (b) WSE also demonstrated one to two orders of magnitude improvement in energy efficiency over both CPU and GPU
systems; (c) Relative energy efficiency and performance of CPU and GPU systems compared to WSE, showing Pareto front dominance of WSE on both metrics.
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Conclusion

Summary
= Cerebras WSE-2 Dataflow architecture

= MD simulation and candidate exchange algorithm

My interests
= Intersection of architecture and HPC

= Task-based programming models for dataflow
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Questions?
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